Features

- True Dual-Ported memory cells which allow simultaneous reads of the same memory location
- High-speed access
- Military:20/25/35/55/70ns (max.)
- Industrial:55ns (max.)
- Commercial: 15/17/20/25/35/55ns (max.)
- Low-power operation
- IDT7025S

Active: 750 mW (typ.)
Standby: 5mW (typ.)

- IDT7025L

Active: 750 mW (typ.)
Standby: 1mW (typ.)

- Separate upper-byte and lower-byte control for multiplexed bus compatibility
- IDT7025 easily expands data bus width to 32 bits or more using the Master/Slave select when cascading more than one device
- $M / \bar{S}=\mathrm{H}$ for $\overline{B U S Y}$ output flag on Master $M / \bar{S}=L$ for $\overline{B U S Y}$ input on Slave
- Interrupt Flag
- On-chip port arbitration logic
- Full on-chip hardware support of semaphore signaling between ports
- Fully asynchronous operation from either port
- Battery backup operation-2V data retention
- TTL-compatible, single 5V ($\pm 10 \%$) power supply
- Available in 84-pin PGA, Flatpack, PLCC, and 100-pin Thin Quad Flatpack
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available for selected speeds

Functional Block Diagram

NOTES:

1. (MASTER): $\overline{B U S Y}$ is output; (SLAVE): $\overline{B U S Y}$ is input.
2. $\overline{\text { BUSY }}$ outputs and $\overline{\mathbb{N T}}$ outputs are non-tri-stated push-pull.

APRIL 2000

Description

The IDT7025 is a high-speed 8K $\times 16$ Dual-Port Static RAM. The IDT7025 is designed to beusedas astand-alone 128K-bitDual-PortRAM or as a combination MASTER/SLAVE Dual-PortRAM for32-bitormore word systems. Usingthe IDTMASTER/SLAVEDual-PortRAM approach in32-bitorwider memory system applications results infull-speed, errorfree operation without the need for additional discrete logic.

This device provides two independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. An automatic power down feature controlled by ChipEnable $(\overline{\mathrm{CE}})$ permits theon-chip circuitry of each
port to enter a very low standby power mode.
Fabricated using IDT'sCMOS high-performancetechnology, these devices typically operate on only 750 mW of power. Low-power (L) versions offerbattery backup data retention capability withtypical power consumption of $500 \mu \mathrm{~W}$ from a 2 V battery.

The IDT7025 is packaged in a ceramic 84-pin PGA, an 84-pin Flatpack, PLCC, and a 100-pin TQFP. Military grade product is manufactured in compliance with the latest revision of MIL-PRF-38535QML, makingitideally suited to military temperature applications demanding the highest level of performance and reliability.

Pin Configurations ${ }^{(\mathbf{1}, \mathbf{2 , 3}}$

Pin Configurations ${ }^{(1,2,3)}$ (con't.)

11	63 I/O7L	61 I/O5L	60 I/O4L	58 I/O2L	55 I/OOL	$5^{54} \overline{\mathrm{OE}_{\mathrm{L}}}$	$\begin{aligned} & 51 \\ & \overline{\mathrm{SEM}} \end{aligned}$	48 $\overline{\mathrm{B}} \mathrm{L}$	46 A11L	45 A10L	42 A7L
10	66 I/O10L	64 I/O8L	62 I/O6L	59 I/O3L	56 I/O1L	${ }^{49} \overline{\mathrm{UBL}}$	${ }^{50} \overline{\mathrm{CE}}$	47 A12L	44 A9L	43 A8L	40 A5L
09	67 I/O11L	65 I/O9L			57 GND	53 Vcc	52 $\mathrm{R} / \overline{\mathrm{W}} \mathrm{L}$			41 A6L	39 A4L
08	69 I/O13L	68 I/O12L			IDT7025G G84-3(4) 84-Pin PGA Top View(5)					38 A3L	37 A2L
07	72 I/O15L	$\begin{array}{\|l\|} \hline 71 \\ \mathrm{I} / \mathrm{O}_{14 \mathrm{~L}} \end{array}$	$\begin{aligned} & 73 \\ & V_{c c} \end{aligned}$						${ }^{33}$ BUSYL	35 Aol	34 $\overline{\mathrm{INTL}}$
06	$\begin{array}{\|l\|} \hline 75 \\ \mathrm{I} / \mathrm{OOR}^{2} \end{array}$	70 GND	$\begin{aligned} & 74 \\ & \text { GND } \end{aligned}$						$\begin{aligned} & 32 \\ & \text { GND } \end{aligned}$	$\begin{aligned} & 31 \\ & \mathrm{M} / \overline{\mathrm{S}} \end{aligned}$	36 A1L
05	$\begin{array}{\|l\|} \hline 76 \\ \mathrm{I} / \mathrm{O}_{1 \mathrm{R}} \end{array}$	${ }^{77} \mathrm{I} / \mathrm{O}_{2 \mathrm{R}}$	$\begin{aligned} & \hline 78 \\ & \mathrm{Vcc} \end{aligned}$						28 Aor	29 $\overline{\mathrm{INT}} \mathrm{R}$	30 $\overline{B U S Y R}$
04	79 $\mathrm{I} / \mathrm{O}_{3 \mathrm{R}}$	80 I/O4R								26 A2R	27 A1R
03	81 I/O5R	$\begin{aligned} & 83 \\ & \text { I/O7R } \end{aligned}$			7 GND	11 GND	$\frac{12}{\overline{S E M}_{R}}$			23 A5R	25 A3R
02	82 I/O6R	1 I/O9R	2 I/O10R	5 I/O13R	8 I/O15R	$\begin{aligned} & 10 \\ & R / \bar{W}_{R} \end{aligned}$	14 $\overline{\mathrm{UB}} \mathrm{R}$	17 A11R	20 A8R	22 A6R	24 A4R
01	84 I/O8R	$\begin{aligned} & \hline 3 \\ & \mathrm{I} / \mathrm{O}_{11 \mathrm{R}} \end{aligned}$	4 I/O12R	6 I/O14R	9 $\overline{\mathrm{OE}}_{\mathrm{R}}$	${ }^{15} \overline{\overline{L B}}_{R}$	${\stackrel{13}{ } \overline{\mathrm{CE}}_{\mathrm{R}}}$	16 A12R	18 A10R	19 A9R	21 A7R
	A	B	C	D	E	F	G	H	J	K	$2683 \text { drw }$

NOTES:

1. All Vcc pins must be connected to power supply.
2. All GND pins must be connected to ground supply.
3. Package body is approximately 1.12 in $\times 1.12$ in x .16 in.
4. This package code is used to reference the package diagram.
5. This text does not indicate orientation of the actual part-marking.

Pin Names

Left Port	Right Port	Names
$\overline{\mathrm{C}} \mathrm{E}$ L	$\bar{C}_{\bar{E}}{ }^{\text {r }}$	Chip Enable
$\mathrm{R} / \bar{W} \mathrm{~L}$	$\mathrm{R} / \bar{W}_{\mathrm{R}}$	Read/Write Enable
$\overline{\mathrm{OE}} \mathrm{L}$	$\overline{\mathrm{OE}}_{\mathrm{R}}$	Output Enable
Aol - A12L	Aor - A12R	Address
//OOL - //O15L	/Oor - //O15R	Data Input/Output
$\overline{\text { SEML }}$	$\overline{S E M}{ }^{\text {r }}$	Semaphore Enable
$\overline{\text { UBL }}$	$\overline{U S}_{\mathrm{B}}$	Upper Byte Select
$\overline{\mathrm{L}}$ BL	$\bar{L}_{\mathrm{B}}^{\mathrm{R}}$	Lower Byte Select
$\overline{\mathrm{INT}} \mathrm{L}$	$\overline{i N T}_{\text {IR }}$	Interrupt Flag
$\overline{B U S Y}{ }^{\text {L }}$	$\overline{B U S Y S}_{R}$	Busy Flag
M/S		Master or Slave Select
Vcc		Power
GND		Ground

Truth Table I: Non-Contention Read/Write Control

Inputs ${ }^{(1)}$						Outputs		Mode
$\overline{\mathrm{C}} \mathrm{E}$	R/W	$\overline{\mathrm{OE}}$	$\overline{\text { UB }}$	$\overline{\mathrm{LB}}$	$\overline{\text { SEM }}$	1/08-15	1/00-7	
H	X	X	X	X	H	High-Z	High-Z	Deselected
X	X	X	H	H	H	High-Z	High-Z	Both Bytes Deselected
L	L	X	L	H	H	DATAIN	High-Z	Write to Upper Byte Only
L	L	X	H	L	H	High-Z	DATAIN	Write to Lower Byte Only
L	L	X	L	L	H	DATAIN	DATAIN	Write to Both Bytes
L	H	L	L	H	H	DATAout	High-Z	Read Upper Byte Only
L	H	L	H	L	H	High-Z	DATAOut	Read Lower Byte Only
L	H	L	L	L	H	DATAout	DATAout	Read Both Bytes
X	X	H	X	X	X	High-Z	High-Z	Outputs Disabled

NOTE:

1. $A_{0 L}-A_{12 L} \neq A_{O R}-A_{12 R}$.

Truth Table II: Semaphore Read/Write Control ${ }^{(1)}$

Inputs						Outputs		Mode
$\bar{C} \bar{E}$	R / \bar{W}	$\overline{\mathrm{OE}}$	$\overline{U B}$	$\overline{\text { LB }}$	$\overline{\text { SEM }}$	1/08-15	1/00-7	
H	H	L	X	X	L	DATAOUT	DATAout	Read Semaphore Flag Data Out
X	H	L	H	H	L	DATAout	DATAout	Read Semaphore Flag Data Out
H	\uparrow	X	X	X	L	DATAIN	DATAIN	Write $\mathrm{I} / \mathrm{O}_{0}$ into Semaphore Flag
X	\uparrow	X	H	H	L	DATAIN	DATAIN	Write I/Oo into Semaphore Flag
L	X	X	L	X	L	-	-	Not Allowed
L	X	X	X	L	L	-	-	Not Allowed

NOTES:

1. There are eight semaphore flags written to via I / O_{0} and read from $I / O_{0}-I / O_{15}$. These eight semaphores are addressed by $A_{0}-A_{2}$.

IDT7025S/L
High-Speed 8K x 16 Dual-Port Static RAM

Absolute Maximum Ratings ${ }^{(1)}$

Symbol	Rating	Commercial \& Industrial	Military	Unit
VTERM ${ }^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-55 to +125	-65 to +150	${ }^{\circ} \mathrm{C}$
IOUT	DC Output Current	50	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vterm must not exceed $V c c+10 \%$ for more than 25% of the cycle time or 10 ns maximum, and is limited to $\leq 20 \mathrm{~mA}$ for the period over Vterm $\geq \mathrm{VcC}+10 \%$.

Capacitance ${ }^{(1)}\left(\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{mhz}\right)$

Symbol	Parameter	Conditions $^{(2)}$	Max	Unit
CIN	Input Capacitance	$\mathrm{V} \mathbb{N}=3 \mathrm{dV}$	9	pF
Cout	Oupput Capacitance	Vout $=3 \mathrm{dV}$	10	pF

NOTES:

1. This parameter is determined by device characterization but is not production tested. For TQFP package only.
2. 3 dV references the interpolated capacitance when the input and output signals switch from 0 V to 3 V or from 3 V to OV .

Maximum Operating Temperature and Supply Voltage ${ }^{(1,2)}$

Grade	Ambient Temperature	GND	Vcc
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0 V	$5.0 \mathrm{~V} \pm 10 \%$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0 V	$5.0 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 V	$5.0 \mathrm{~V} \pm 10 \%$

NOTES:

1. This is parameter TA.
2. Industrial temperature: for other speeds, packages and powers contact your sales office.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Typ.	Max	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Ground	0	0	0	V
VIH	Input High Voltage	2.2	-	$6.0^{(2)}$	V
VIL	Input Low Voltage	$-0.5^{(1)}$	-	0.8	V

NOTES:

1. VIL $\geq-1.5 \mathrm{~V}$ for pulse width less than 10 ns .
2. Vterm must not exceed Vcc $+10 \%$.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (Vcc =5.0V $\pm \mathbf{1 0 \%}$)

Symbol	Parameter	Test Conditions	7025S		7025L		Unit	
			Min.	Max.	Min.	Max.		
\|lıl		Input Leakage Current ${ }^{(1)}$	$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{VIN}=0 \mathrm{~V}$ to Vcc	-	10	-	5	$\mu \mathrm{A}$
\|ILOI	Output Leakage Current	Vout $=0 \mathrm{~V}$ to Vcc	-	10	-	5	$\mu \mathrm{A}$	
VoL	Output Low Voltage	$10 \mathrm{~L}=+4 \mathrm{~mA}$	-	0.4	-	0.4	V	
Vон	Output High Voltage	$1 \mathrm{OH}=-4 \mathrm{~mA}$	2.4	-	2.4	-	V	

NOTE:

1. At $V c c \leq 2.0 \mathrm{~V}$ input leakages are undefined.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range ${ }^{(1,6)}$ (Vcc =5.0V $\pm \mathbf{1 0 \%}$)

Symbol	Parameter	Test Condition	Version		$\begin{gathered} \text { 7025X15 } \\ \text { Com'I Only } \end{gathered}$		$\begin{gathered} \text { 7025X17 } \\ \text { Com'I Only } \end{gathered}$		$\begin{aligned} & \text { 7025X20 } \\ & \text { Com'I \& } \\ & \text { Military } \end{aligned}$		7025X25 Military		Unit
					Typ. ${ }^{(2)}$	Max.							
ICC	Dynamic Operating Current (Both Ports Active)	$\begin{aligned} & \overline{\overline{C E}_{=}=\text {VIL, Outputs Open }} \\ & \overline{S E M}=V / H \\ & \mathrm{f}=\mathrm{FMAX}{ }^{(3)} \end{aligned}$	COM'L	S	$\begin{aligned} & 170 \\ & 170 \end{aligned}$	$\begin{aligned} & 310 \\ & 260 \end{aligned}$	$\begin{aligned} & 170 \\ & 170 \end{aligned}$	$\begin{aligned} & 310 \\ & 260 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 290 \\ & 240 \end{aligned}$	$\begin{aligned} & 155 \\ & 155 \end{aligned}$	$\begin{aligned} & 265 \\ & 220 \end{aligned}$	mA
			$\left\lvert\, \begin{aligned} & \text { MIL \& } \\ & \text { IND } \end{aligned}\right.$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	-	二	-	-	$\begin{aligned} & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 370 \\ & 320 \end{aligned}$	$\begin{aligned} & 155 \\ & 155 \end{aligned}$	$\begin{aligned} & 340 \\ & 280 \end{aligned}$	
\|SB1	Standby Current (Both Ports - TLL Level Inputs)	$\begin{aligned} & \overline{\mathrm{CEE}}_{\mathrm{L}}=\overline{\mathrm{CE}}_{\mathrm{R}}=\mathrm{V}_{\mathrm{H}} \\ & \mathrm{SEMR}_{\mathrm{R}}=\overline{\mathrm{SEM}} \mathrm{~L}=\mathrm{VIH}_{\mathrm{H}} \\ & \mathrm{f}=\mathrm{fMAX}(3) \end{aligned}$	COM'L	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	mA
			$\begin{array}{\|l\|} \text { MIL \& } \\ \text { IND } \end{array}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	-	-	-	-	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 90 \\ & 70 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 80 \\ & 65 \end{aligned}$	
ISB2	Standby Current (One Port - TLL Level Inputs)		COM'L	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \\ & \hline \end{aligned}$	$\begin{aligned} & 190 \\ & 160 \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \\ & \hline \end{aligned}$	$\begin{aligned} & 190 \\ & 160 \end{aligned}$	$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 180 \\ & 150 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 170 \\ & 140 \\ & \hline \end{aligned}$	mA
			$\left\lvert\, \begin{aligned} & \mathrm{MIL} \& \& \\ & \text { IND } \end{aligned}\right.$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	-	-	-	-	$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 240 \\ & 210 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 215 \\ & 180 \end{aligned}$	
ISB3	Full Standby Current (Both Ports CMOS Level Inputs)	$\begin{aligned} & \overline{\mathrm{CE}} \text { and } \overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}, \\ & \mathrm{VIN} \geq \mathrm{Vcc}-0.2 \mathrm{~V} \text { or } \\ & \mathrm{VIN} \leq 0.2 \mathrm{~V}, \mathrm{f}=0^{(4)} \\ & \overline{\mathrm{SEMR}}=\overline{\mathrm{SEML}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} \end{aligned}$	COM'L	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 15 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 15 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 15 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 15 \\ & 5 \end{aligned}$	mA
			$\begin{array}{\|l} \hline \text { MIL \& } \\ \text { IND } \end{array}$	S	-	-	-	-	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	
ISB4	Full Standby Current (One Port CMOS Level Inputs)		COM'L	S	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 170 \\ & 140 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 170 \\ & 140 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 155 \\ & 130 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 145 \\ & 120 \end{aligned}$	mA
			$\left\lvert\, \begin{aligned} & \mathrm{MIL} \\ & \text { IND } \end{aligned}\right.$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	-	-	-	-	90 90	225	$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 200 \\ & 170 \end{aligned}$	

Symbol	Parameter	Test Condition	Version		7025X35 Com'l \& Military		7025X55 Com'I, Ind \& Military		7025×70 Military Only		Unit
					Typ. ${ }^{(2)}$	Max.	Typ. ${ }^{(2)}$	Max.	Typ. ${ }^{(2)}$	Max.	
ICC	Dynamic Operating Current (Both Ports Active)	$\begin{aligned} & \overline{\overline{C E}}=\text { VIL, Outputs Open } \\ & \text { SEM }=V \text { IH } \\ & f=\text { fmax }^{(3)} \end{aligned}$	COM'L	S	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 250 \\ & 210 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 250 \\ & 210 \end{aligned}$	-	-	mA
			$\begin{array}{\|l} \hline \text { MIL \& } \\ \text { IND } \end{array}$	S	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 300 \\ & 250 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 300 \\ & 250 \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \end{aligned}$	$\begin{aligned} & 300 \\ & 250 \end{aligned}$	
ISB1	Standby Current (Both Ports - TTL Level Inputs)		COM'L	S	$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	-	-	mA
			$\begin{aligned} & \hline \text { MIL \& } \\ & \text { IND } \end{aligned}$	S	$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 80 \\ & 65 \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 80 \\ & 65 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 80 \\ & 65 \end{aligned}$	
ISB2	Standby Current (One Port - TLL Level Inputs)	$\overline{C E}^{\prime \prime}{ }^{\prime \prime}=\mathrm{VIL}$ and $\overline{\mathrm{CE}}{ }^{\prime \prime} \mathrm{B}^{\prime \prime}=\mathrm{V} \mathrm{H}^{(5)}$ Active Port Outputs Open, $\mathrm{f}=\mathrm{fmax} \mathrm{x}^{(3)}$$\overline{\mathrm{SEM}}_{\mathrm{R}}=\overline{\mathrm{SEM}}=\mathrm{V}_{\mathrm{IH}}$	COM'L	S	$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 155 \\ & 130 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 155 \\ & 130 \end{aligned}$	-	-	mA
			$\begin{array}{\|l\|} \text { MIL } \\ \text { IND } \end{array}$	S	$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 190 \\ & 160 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 190 \\ & 160 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 190 \\ & 160 \end{aligned}$	
ISB3	Full Standby Current (Both Ports CMOS Level Inputs)	$\begin{aligned} & \overline{\mathrm{CE}} \mathrm{a} \text { and } \overline{\mathrm{CE}} \mathrm{R} \geq \mathrm{Vcc}-0.2 \mathrm{~V}, \\ & \mathrm{VIN} \geq \mathrm{Vcc}-0.2 \mathrm{~V} \text { or } \\ & \mathrm{VIN} \geq 0.2 \mathrm{~V}, \mathrm{f}=0^{(4)} \\ & \mathrm{SEMR}=\overline{\mathrm{SEML}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} \end{aligned}$	COM'L	S	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 15 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 15 \\ & 5 \end{aligned}$	-	-	mA
			$\begin{array}{\|l\|} \hline \text { MIL \& } \\ \text { IND } \end{array}$	S	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	
ISB4	Full Standby Current (One Port CMOS Level Inputs)		COM'L	L	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 135 \\ & 110 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 135 \\ & 110 \end{aligned}$	-	-	mA
			$\begin{array}{\|l\|} \text { MIL \& } \\ \text { IND } \end{array}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 175 \\ & 150 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 175 \\ & 150 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 175 \\ & 150 \end{aligned}$	

NOTES:

1. ' X ' in part number indicates power rating (S or L)
2. $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, and are not production tested. $\mathrm{Icc} \mathrm{dc}=120 \mathrm{~mA}$ (TYP)
3. At $f=f m a x$, address and I / O 's are cycling at the maximum frequency read cycle of $1 / \mathrm{trc}$, and using "AC Test Conditions" of input levels of GND to $3 V$.
4. $f=0$ means no address or control lines change.
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
6. Industrial temperature: for other speeds, packages and powers contact your sales office.

Data Retention Characteristics Over All Temperature Ranges
 (L Version Only)

Symbol	Parameter	Test Condition		Min.	Typ. ${ }^{(1)}$	Max.	Unit
VDR	Vcc for Data Retention	$\mathrm{Vcc}=2 \mathrm{~V}$		2.0	-	-	V
ICCDR	Data Retention Current	$\begin{aligned} & \overline{\mathrm{C}} \overline{\mathrm{E}} \geq \mathrm{VHC} \\ & \mathrm{VI} \geq \mathrm{VHC} \text { or } \leq \mathrm{VLC} \end{aligned}$	MIL. \& IND.	-	100	4000	$\mu \mathrm{A}$
			COM'L.	-	100	1500	
$\mathrm{tCDR}^{(3)}$	Chip Deselect to Data Retention Time	$\bar{S} \overline{E M} \geq$ Vhc		0	-	-	ns
$\mathrm{tR}^{(3)}$	Operation Recovery Time			$\operatorname{trc}^{(2)}$	-	-	ns

NOTES:

1. $\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{V} c \mathrm{C}=2 \mathrm{~V}$, and are not production tested.
2. \quad tRC $=$ Read Cycle Time
3. This parameter is guaranteed by device characterization, but is not production tested.
4. At Vcc $\leq 2.0 \mathrm{~V}$ input leakages are undefined.

Data Retention Waveform

AC Test Conditions

Input Pulse Levels	GND to 3.0 V
Input Rise/Fall Times	5 ns Max.
Input Timing Reference Levels	1.5 V
Output Reference Levels	1.5 V
Output Load	Figures 1 and 2

2683 tbl 11

Figure 1. AC Output Test Load

2683 drw 06

Figure 2. Output Test Load (for tlz, thz, twz, tow) *including scope and jig.

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range ${ }^{(4,5)}$

Symbol	Parameter	7025X15 Com'l Only		$\begin{gathered} \text { 7025X17 } \\ \text { Com'l Only } \end{gathered}$		7025X20 Military		7025X25 Military		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
tre	Read Cycle Time	15	-	17	-	20	-	25	-	ns
tAA	Address Access Time	-	15	-	17	-	20	-	25	ns
tace	Chip Enable Access Time ${ }^{(3)}$	-	15	-	17	-	20	-	25	ns
tabe	Byte Enable Access Time ${ }^{(3)}$	-	15	-	17	-	20	-	25	ns
taoe	Output Enable Access Time ${ }^{(3)}$	-	10	-	10	-	12	-	13	ns
tor	Output Hold from Address Change	3	-	3	-	3	-	3	-	ns
t.z	Output Low-Z Time ${ }^{(1,2)}$	3	-	3	-	3	-	3	-	ns
thz	Output High-Z Time ${ }^{(1,2)}$	-	10	-	10	-	12	-	15	ns
tPU	Chip Enable to Power Up Time ${ }^{(1,2)}$	0	-	0	-	0	-	0	-	ns
tPD	Chip Disable to Power Down Time ${ }^{(1,2)}$	-	15	-	17	-	20	-	25	ns
tsop	Semaphore Flag Update Pulse ($\overline{\mathrm{OE}}$ or $\overline{\text { SEM }}$)	10	-	10	-	10	-	10	-	ns
tsAA	Semaphore Address Access ${ }^{(3)}$	-	15	-	17	-	20	-	25	ns

Symbol	Parameter	7025X35 Military		7025X55 Com'I, Ind \& Military		7025×70 Military Only		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
trc	Read Cycle Time	35	-	55	-	70	-	ns
taA	Address Access Time	-	35	-	55	-	70	ns
tace	Chip Enable Access Time ${ }^{(3)}$	-	35	-	55	-	70	ns
tabe	Byte Enable Access Time ${ }^{(3)}$	-	35	-	55	-	70	ns
taoe	Output Enable Access Time ${ }^{(3)}$	-	20	-	30	-	35	ns
tor	Output Hold from Address Change	3	-	3	-	3	-	ns
t.z	Output Low-Z Time ${ }^{(1,2)}$	3	-	3	-	3	-	ns
thz	Output High-Z Time ${ }^{(1,2)}$	-	15	-	25	-	30	ns
tpu	Chip Enable to Power Up Time ${ }^{(1,2)}$	0	-	0	-	0	-	ns
tPD	Chip Disable to Power Down Time ${ }^{(1,2)}$	-	35	-	50	-	50	ns
tsop	Semaphore Flag Update Pulse ($\overline{\mathrm{OE}}$ or $\overline{\mathrm{SEM}}$)	15	-	15	-	15	-	ns
tsaA	Semaphore Address Access ${ }^{(3)}$	-	35	-	55	-	70	ns

NOTES:

1. Transition is measured 0 mV from Low or High-impedance voltage with Output Test Load (Figure 2).
2. This parameter is guaranteed by device characterazation, but is not production tested.
3. To access RAM, $\overline{C E}=V_{I L}, \overline{U B}$ or $\overline{L B}=V_{I L}$, and $\overline{S E M}=V_{I H}$. To access semephore, $\overline{C E}=V_{I H}$ or $\overline{U B} \& \overline{L B}=V_{I H}$, and $\overline{S E M}=V_{I L}$.
4. 'X' in part number indicates power rating (S or L).
5. Industrial temperature: for other speeds, packages and powers contact your sales office.

Waveform of Read Cycles ${ }^{(5)}$

NOTES:

1. Timing depends on which signal is asserted last, $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}, \overline{\mathrm{LB}}$, or $\overline{\mathrm{UB}}$.
2. Timing depends on which signal is de-asserted first, $\overline{\mathrm{C}}, \overline{\mathrm{O}}, \overline{\mathrm{LB}}$, or $\overline{\mathrm{UB}}$.
3. tBDD delay is required only in case where opposite port is completing a write operation to the same address location for simultaneous read operations BUSY has no relation to valid output data.
4. Start of valid data depends on which timing becomes effective last tabe, taOe, tace, taA or tBDD.
5. $\overline{\mathrm{SEM}}=\mathrm{V} \mathrm{IH}$.

Timing of Power-Up Power-Down

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage ${ }^{(5,6)}$

Symbol	Parameter	7025X15 Com'I Only		7025×17Com'l Only		7025X20 Com'l \& Military		7025X25 Com'l \& Military		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	

WRITE CYCLE

twc	Write Cycle Time	15	-	17	-	20	-	25	-	ns
tew	Chip Enable to End-of-Write ${ }^{(3)}$	12	-	12	-	15	-	20	-	ns
taw	Address Valid to End-of-Write	12	-	12	-	15	-	20	-	ns
tAS	Address Set-up Time ${ }^{(3)}$	0	-	0	-	0	-	0	-	ns
twp	Write Pulse Width	12	-	12	-	15	-	20	-	ns
twr	Write Recovery Time	0	-	0	-	0	-	0	-	ns
tow	Data Valid to End-of-Write	10	-	10	-	15	-	15	-	ns
thz	Ouput High-Z Time ${ }^{(1,2)}$	-	10	-	10	-	12	-	15	ns
tDH	Data Hold Time ${ }^{(4)}$	0	-	0	-	0	-	0	-	ns
twz	Write Enable to Ouput in High-Z ${ }^{(1,2)}$	-	10	-	10	-	12	-	15	ns
tow	Output Active from End-of-Write ${ }^{(1,2,4)}$	0	-	0	-	0	-	0	-	ns
tSWRD	$\overline{\text { SEM Flag Write to Read Time }}$	5	-	5	-	5	-	5	-	ns
tsps	$\overline{\text { SEM }}$ Flag Contention Window	5	-	5	-	5	-	5	-	ns

2683 tbl 13a

Symbol	Parameter	7025X35 Com'l \& Military		7025X55 Com'l, Ind \& Military		$\begin{gathered} \text { 7025X70 } \\ \text { Military Only } \end{gathered}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
WRITE CYCLE								
twc	Write Cycle Time	35	-	55	-	70	-	ns
tew	Chip Enable to End-of-Write ${ }^{(3)}$	30	-	45	-	50	-	ns
taw	Address Valid to End-of-Write	30	-	45	-	50	-	ns
tAS	Address Set-up Time ${ }^{(3)}$	0	-	0	-	0	-	ns
twP	Write Pulse Width	25	-	40	-	50	-	ns
tWR	Write Recovery Time	0	-	0	-	0	-	ns
tDW	Data Valid to End-of-Write	15	-	30	-	40	-	ns
thz	Output High-Z Time ${ }^{(1,2)}$	-	15	-	25	-	30	ns
tDH	Data Hold Time ${ }^{(4)}$	0	-	0	-	0	-	ns
tWZ	Write Enable to Output in High-Z ${ }^{(1,2)}$	-	15	-	25	-	30	ns
tow	Output Active from End-of-Write ${ }^{(1,2,4)}$	0	-	0	-	0	-	ns
tSWRD	$\overline{\text { SEM }}$ Flag Write to Read Time	5	-	5	-	5	-	ns
tSPS	$\overline{\text { SEM }}$ Flag Contention Window	5	-	5	-	5	-	ns

NOTES:

1. Transition is measured OmV from Low or High-impedance voltage with the Output Test Load (Figure 2).
2. This parameter is guaranteed by device characterization, but is not production tested.
3. To access RAM, $\overline{C E}=V_{I L}, \overline{U B}$ or $\overline{\bar{B}}=V_{I L}, \overline{S E M}=V_{I H}$. To access semaphore, $\overline{C E}=V_{I H}$ or $\overline{U B} \& \overline{L B}=V_{I H}$, and $\overline{S E M}=V_{I L}$. Either condition must be valid for the entire tew time.
4. The specification for tor must be met by the device supplying write data to the RAM under all operating conditions. Although tor and tow values will vary over voltage and temperature, the actual tor will always be smaller than the actual tow.
5. ' X ' in part number indicates power rating (S or L).
6. Industrial temperature: for other speeds, packages and powers contact your sales office.

Timing Waveform of Write Cycle No. 1, R/工्W Controlled Timing ${ }^{(1,5,8)}$

2683 drw 09

Timing Waveform of Write Cycle No. 2, $\overline{C E}, \overline{U B}, \overline{L B}$ Controlled Timing ${ }^{(1,5)}$

NOTES:

1. $\mathrm{R} \overline{\mathrm{W}}$ or $\overline{\mathrm{CE}}$ or $\overline{\mathrm{UB}} \& \overline{\mathrm{LB}}=\mathrm{V} H$ during all address transitions.
2. A write occurs during the overlap (tew or twP) of a $\overline{U B}$ or $\overline{L B}=V I L$ and a $\overline{C E}=V I L$ and a $R / \bar{W}=V I L$ for memory array writing cycle.
3. twR is measured from the earlier of $\overline{C E}$ or $\mathrm{R} / \overline{\mathrm{W}}$ (or $\overline{\mathrm{SEM}}$ or R / \bar{W}) going to VIH to the end-of-write cycle.
4. During this period, the I / O pins are in the output state and input signals must not be applied.
5. If the $\overline{\mathrm{CE}}$ or $\overline{\mathrm{SEM}} \mathrm{LOW}=\mathrm{V}_{\mathrm{IL}}$ transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the HIGH impedance state.
6. Timing depends on which enable signal is asserted last, $\overline{\mathrm{CE}}, \mathrm{R} / \overline{\mathrm{W}}$, or byte control.
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured OmV from steady state with Output Test Load (Figure 2).
8. If $\overline{\mathrm{OE}}=\mathrm{VIL}$ during $\mathrm{R} \bar{W}$ controlled write cycle, the write pulse width must be the larger of twp or (twz + tDW) to allow the I / O drivers to turn off and data to be placed on the bus for the required tDW. If $\overline{\mathrm{OE}}=\mathrm{V} I H$ during an $\mathrm{R} / \overline{\mathrm{W}}$ controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.
9. To access RAM, $\overline{C E}=V_{I L}, \overline{U B}$ or $\overline{L B}=V_{I L}$, and $\overline{S E M}=V_{I H}$. To access Semaphore, $\overline{C E}=V_{I H}$ or $\overline{U B} \& \overline{L B}=V_{I H}$, and $\overline{S E M}=$ VIL. tew must be met for either condition.

Timing Waveform of Semaphore Read after Write Timing, Either Side ${ }^{(1)}$

NOTE:

1. $\overline{\mathrm{CE}}=\mathrm{VIH}$ or $\overline{\mathrm{UB}} \& \overline{\mathrm{LB}}=\mathrm{VIH}$ for the duration of the above timing (both write and read cycle).
2. "DATAout VALID" represents all $1 / 0$'s $(/ / 00-1 / 015)$ equal to the semaphore value.

Timing Waveform of Semaphore Write Contention ${ }^{(1,3,4)}$

NOTES:

1. $\mathrm{DOR}^{2}=\mathrm{DoL}=\mathrm{VIL}, \overline{\mathrm{CE}}_{\mathrm{R}}=\overline{\mathrm{CEL}}=\mathrm{V} \mathrm{IH}$, or both $\overline{\mathrm{UB}} \& \overline{\mathrm{LB}}=\mathrm{VIH}$.
2. All timing is the same for left and right port. Port " A " may be either left or right port. Port " B " is the opposite from port " A ".
3. This parameter is measured from $\mathrm{R} \overline{W_{W}} \mathrm{~A}^{\prime}$ " or SEM"A" going HIGH to $\mathrm{R} / \overline{\mathrm{W}}$ " B " or $\overline{\text { SEM" }} \mathrm{B}$ " going HIGH.
4. If tsPs is not satisfied, there is no guarantee which side will obtain the semaphore flag.

AC Electrical Characteristics Over the Operating Temperature Supply Voltage Range ${ }^{(6,7)}$

Symbol	Parameter	$\begin{gathered} \text { 7025X15 } \\ \text { Com'I Ony } \end{gathered}$		$\begin{gathered} \text { 7025X17 } \\ \text { Com'l Only } \end{gathered}$		7025X20 Military		7025X25 Com'l \& Military		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\overline{\text { BUSY }}$ TIMING (M/S $=$ VIH)										
tBAA	$\overline{\mathrm{B}} \bar{S} \bar{S} \mathrm{Y}$ Access Time from Address Match	-	15	-	17	-	20	-	20	ns
tBDA	$\overline{\text { BUS }}$ Y Disable Time from Address Not Matched	-	15	-	17	-	20	-	20	ns
tBAC	$\bar{B} \bar{U} \bar{S} Y$ Access Time from Chip Enable LOW	-	15	-	17	-	20	-	20	ns
tBDC	$\overline{\mathrm{B}} \bar{S} \bar{S} \mathrm{Y}$ Disable Time from Chip Enable HIGH	-	15	-	17	-	17	-	17	ns
taps	Arbitration Priority Set-up Time ${ }^{(2)}$	5	-	5	-	5	-	5	-	ns
tBDD	$\overline{\text { BUSY }}$ Disable to Valid Data ${ }^{(3)}$	-	18	-	18	-	30	-	30	ns
twh	Write Hold After $\overline{\mathrm{B}} \bar{S} \bar{Y}^{(5)}$	12	-	13	-	15	-	17	-	ns
$\overline{\text { BUSY }}$ TIMING (M/S $=$ VIL)										
twB	$\overline{\text { BUSY }}$ Input to Write ${ }^{(4)}$	0	-	0	-	0	-	0	-	ns
twh	Write Hold After $\bar{B} \overline{U S} \bar{Y}^{(5)}$	12	-	13	-	15	-	17	-	ns
PORT-TO-PORT DELAY TIMING										
twDD	Write Pulse to Data Delay ${ }^{(1)}$	-	30	-	30	-	45	-	50	ns
todo	Write Data Valid to Read Data Delay ${ }^{(1)}$	-	25	-	25	-	35	-	35	ns

2683 tol 14a

Symbol	Parameter	7025X35 Com'l \& Military		7025×5 Com'l, Ind \& Military		7025X70 Military Only		Unit
		Min.	Max	Min.	Max	Min.	Max	

$\overline{\text { BUSY }}$ TIMING (M/S $=$ VIH)

tBAA	$\overline{\text { BUSY}}$ Access Time from Address Match	-	20	-	45	-	45	ns
tBDA	$\overline{\text { BUSY }}$ Disable Time from Address Not Matched	-	20	-	40	-	40	ns
tBAC	$\overline{\text { BUSY }}$ Access Time from Chip Enable LOW	-	20	-	40	-	40	ns
tBDC	$\overline{\text { BUSY }}$ V Disable Time from Chip Enable HIGH	-	20	-	35	-	35	ns
taps	Arbitration Priority Set-up Time ${ }^{(2)}$	5	-	5	-	5	-	ns
tBDD	$\overline{\text { BUSY }}$ Disable to Valid Data ${ }^{(3)}$	-	35	-	40	-	45	ns
twh	Write Hold After $\bar{B} \bar{U} \bar{S}^{(1)}{ }^{(5)}$	25	-	25	-	25	-	ns

$\overline{\text { BUSY }}$ TIMING (M/ $\left.\bar{S}=V_{\mathrm{IL}}\right)$

tw	$\overline{\mathrm{B}} \mathrm{S} \overline{\mathrm{Y}}$ Input to Write ${ }^{(4)}$	0	-	0	-	0	-	ns
twh	Write Hold After $\overline{\mathrm{B}} \mathrm{US}^{(5)}$	25	-	25	-	25	-	ns

PORT-TO-PORT DELAY TIMING

tWDD	Write Pulse to Data Delay ${ }^{(1)}$	-	60	-	80	-	95	ns
tDD	Write Data Valid to Read Data Delay ${ }^{(1)}$	-	45	-	65	-	80	ns

NOTES:

1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write Port-to-Port Read and $\overline{\mathrm{BUSY}}(\mathrm{M} / \overline{\mathrm{S}}=\mathrm{VIII})$ ".
2. To ensure that the earlier of the two ports wins.
3. tbDD is a calculated parameter and is the greater of Ons, twDD - twp (actual) or todo -tow (actual).
4. To ensure that the write cycle is inhibited on Port "B" during contention with Port "A".
5. To ensure that a write cycle is completed on Port "B" after contention with Port "A".
6. ' X ' in part number indicates power rating (S or L).
7. Industrial temperature: for other speeds, packages and powers contact your sales office.

Timing Waveform of Write Port-to-Port Read and $\overline{\left.\mathbf{B U S Y}^{(2,4,5}\right)} \mathbf{(M / \overline { \mathbf { S } } = \mathbf { V I H })}$

NOTES:
2683 drw 13

1. To ensure that the earlier of the two ports wins. taPs is ignored for $M / \bar{S}=V I L$ (slave).
2. $\overline{\mathrm{CE}} \mathrm{L}=\overline{\mathrm{CE}} \mathrm{R}=\mathrm{VIL}$.
3. $\overline{\mathrm{OE}}=\mathrm{VIL}$ for the reading port.
4. If $M / \bar{S}=V I L$ (SLAVE), then $\overline{B U S Y}$ is an input. Therefore in this example $\overline{B U S Y} " A "=V I H$ and $\overline{B U S Y} " B$ input is shown.
5. All timing is the same for left and right ports. Port "A" may be either the left of right port. Port "B" is the opposite port from Port "A".

Timing Waveform of Write with BUSY

NOTES:

1. twh must be met for both $\overline{B U S Y}$ input (slave) output master.
2. $\overline{\mathrm{BUSY}}$ is asserted on port " B " Blocking $\mathrm{R} \overline{\mathrm{W}}$ " B ", until $\overline{\mathrm{BUSY}} " \mathrm{~B}$ " goes HIGH.
3. twB is only for the 'Slave' Version.

Waveform of $\bar{B} U S Y$ Arbitration Controlled by $\overline{\mathbf{C E}} \mathbf{T i m i n g}{ }^{(1)}$ (M/S $\left.=\mathbf{V I H}\right)$

Waveform of BUSY Arbitration Cycle Controlled by Address Match Timing ${ }^{(1)}(\mathbf{M} / \overline{\mathbf{S}}=\mathbf{V I H})$

NOTES:

1. All timing is the same for left and right ports. Port " A " may be either the left or right port. Port " B " is the port opposite from " A ".
2. If tAPs is not satisfied, the $\overline{\mathrm{BUSY}}$ signal will be asserted on one side or another but there is no guarantee on which side $\overline{\mathrm{BUSY}}$ will be asserted.

AC Electrical Characteristics Over the

 Operating Temperature and Supply Voltage Range ${ }^{(1,2)}$| | | $\begin{gathered} \text { 7025X15 } \\ \text { Com'l Only } \end{gathered}$ | | $\begin{gathered} \text { 7025X17 } \\ \text { Com'l Only } \end{gathered}$ | | 7025X20

 Military | | 7025X25 Com'l \& Military | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Unit |
| INTERRUPT TIMING | | | | | | | | | | |
| tAS | Address Set-up Time | 0 | - | 0 | - | 0 | - | 0 | - | ns |
| twr | Write Recovery Time | 0 | - | 0 | - | 0 | - | 0 | - | ns |
| tins | Interrupt Set Time | - | 15 | - | 15 | - | 20 | - | 20 | ns |
| tinR | Interrupt Reset Time | - | 15 | - | 15 | - | 20 | - | 20 | ns |

		7025×35 Military		7025X55 Com'I, Ind \& Military		$\begin{gathered} \text { 7025X70 } \\ \text { Military Only } \end{gathered}$		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
INTERRUPT TIMING								
tAS	Address Set-up Time	0	-	0	-	0	-	ns
twR	Write Recovery Time	0	-	0	-	0	-	ns
tins	Interrupt Set Time	-	25	-	40	-	50	ns
tinR	Interrupt Reset Time	-	25	-	40	-	50	ns

NOTES:

[^0]Waveform of Interrupt Timing ${ }^{(1)}$

NOTES:

1. All timing is the same for left and right ports. Port " A " may be either the left or right port. Port " B " is the port opposite from " A ".
2. See Interrupt Flag Truth Table.
3. Timing depends on which enable signal ($\overline{\mathrm{CE}}$ or $\mathrm{R} / \overline{\mathrm{W}}$) is asserted last.
4. Timing depends on which enable signal ($\overline{\mathrm{CE}}$ or $\mathrm{R} / \overline{\mathrm{W}}$) is de-asserted first.

Truth Tables

Truth Table I - Interrupt Flag ${ }^{(1)}$

Left Port					Right Port					Function
$\mathrm{R} / \bar{W}_{\mathrm{L}}$	$\overline{\mathrm{C}} \bar{E}^{\text {L }}$	$\overline{\mathrm{O}} \mathrm{L}$	A0L-A12L	$\overline{\mathrm{INT}} \mathrm{L}$	$\mathrm{R} \bar{W}_{\mathrm{F}}$	$\overline{C o}_{\text {E }}$	$\overline{O E}_{\mathrm{R}}$	Aor-A12R	$\overline{\mathrm{INT}} \mathrm{R}$	
L	L	X	1FFF	X	X	X	X	X	$L^{(2)}$	Set Right İNT̄Tr Flag
X	X	X	X	X	X	L	L	1FFF	$\mathrm{H}^{(3)}$	
X	X	X	X	$\left\llcorner^{(3)}\right.$	L	L	X	1FFE	X	Set Left İNT̄TL Flag
X	L	L	1FFE	$\mathrm{H}^{(2)}$	X	X	X	X	X	Reset Left İNTL Flag

NOTES:

1. Assumes $\overline{B U S Y} L=\overline{B U S Y}{ }_{R}=\mathrm{VIH}_{\mathrm{I}}$.
2. If $B U S Y L=V I L$, then no change.
3. If $\overline{\mathrm{BUSY}}_{\mathrm{R}}=\mathrm{VIL}$, then no change.
4. $\overline{\operatorname{NT} T R}$ and $\overline{\mathrm{NT}} \mathrm{L}$ must be initialized at power-up.

Truth Table II - Address BUSY Arbitration

Inputs			Outputs		Function
$\overline{\mathrm{C}} \bar{E}^{\text {L }}$	$\overline{\mathrm{C}} \mathrm{E}_{\mathrm{R}}$	AoL-A12L AoR-A12R	$\overline{\text { BUSYY }}{ }^{(1)}$	$\overline{\text { BUS }} \bar{Y}^{(1)}$	
X	X	NO MATCH	H	H	Normal
H	X	MATCH	H	H	Normal
X	H	MATCH	H	H	Normal
L	L	MATCH	(2)	(2)	Write Inhibit ${ }^{(3)}$

NOTES:

1. Pins $\overline{B U S Y} L$ and $\overline{B U S Y}{ }_{R}$ are both outputs when the part is configured as a master. $\overline{B U S Y}$ are inputs when configured as a slave. $\overline{B U S Y} \times$ outputs on the IDT7025 are push pull, not open drain outputs. On slaves the BUSY asserted internally inhibits write.
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address and enable inputs of this port. If taps is not met, either $\overline{B U S Y} L$ or $\overline{B U S Y}_{R}=$ LOW will result. $\overline{B U S Y}$ and $\overline{B U S Y}$ R outputs cannot be LOW simultaneously.
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored when $\widehat{B U S Y}_{\mathrm{R}}$ outputs are driving LOW regardless of actual logic level on the pin.

Truth Table III - Example of Semaphore Procurement Sequence ${ }^{(1,2,3)}$

Functions	Do - D15 Left $^{c \mid}$	D0 - D15 Right	
No Action	1	1	Status
Left Port Writes "0" to Semaphore	0	1	Left port has semaphore token
Right Port Writes "0" to Semaphore	0	1	No change. Right side has no write access to semaphore
Left Port Writes "1" to Semaphore	1	0	Right port obtains semaphore token
Left Port Writes "0" to Semaphore	1	0	No change. Left port has no write access to semaphore
Right Port Writes "1" to Semaphore	0	1	Left port obtains semaphore token
Left Port Writes "1" to Semaphore	1	1	Semaphore free
Right Port Writes "0" to Semaphore	1	0	Right port has semaphore token
Right Port Writes "1" to Semaphore	1	1	Semaphore free
Left Port Writes "0" to Semaphore	0	1	Left port has semaphore token
Left Port Writes "1" to Semaphore	1	1	Semaphore free

NOTES:

1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7025.
2. There are eight semaphore flags written to via I / O_{0} and read from all I / O^{\prime} s. These eight semaphores are addressed by A_{0} - A_{2}.
3. $\overline{\mathrm{CE}}=\mathrm{VIH}, \overline{\mathrm{SEM}}=\mathrm{VIL}$, to access the semaphores. Refer to the Semaphore Read/Write Truth Table.

Functional Description

The IDT7025 provides two ports with separate control, address and I/Opins that permitindependentaccess forreads orwritesto any location inmemory. The IDT7025 has an automatic powerdownfeature controlled by $\overline{\mathrm{CE}}$. The $\overline{\mathrm{CE}}$ controls on-chip power down circuitry that permits the respective portto go into a standby mode when not selected ($\overline{\mathrm{CE}}=\mathrm{V} / \mathrm{H})$. When a port is enabled, access to the entire memory array is permitted.

Interrupts

Ifthe userchooses the interruptfunction, a memorylocation (mail box or message center) is assigned to each port. The left port interrupt flag (NTLL) is asserted when the right port writes to memory location 1FFE
(HEX), where a write is defined as the $\overline{C E} R=R \bar{M} \bar{R}=V$ IL perTruth Table I. The left port clears the interrupt by an address location 1FFE access when $\overline{C E L}=\overline{\mathrm{OE} L}=\mathrm{VIL}, \mathrm{R} \bar{W} \mathrm{~L}$ is a "don't care". Likewise, the right port interruptflag (NTR) is asserted whenthe lettportwritestomemory location 1FFF(HEX) andto clearthe interruptlag (INTR), the rightportmustaccess the memory location 1FFF, The message (16 bits) at 1 FFE or 1FFF is user-defined, since it is an addressable SRAM location. If the interrupt function is not used, address locations 1FFE and 1FFF are not used as mail boxes, butaspartoftherandomaccess memory. Referto TruthTable Iforthe interruptoperation.

Busy Logic

Busy Logic provides a hardware indicationthat both ports of the RAM haveaccessedthe same locationatthe same time. Italsoallows one ofthe twoaccesses to proceed andsignals the othersidethatthe RAM is "busy". The BUSY pin can then be used to stall the access until the operation on the otherside is completed. If a write operation has been attempted from the side thatreceives aBUSY indication, the write signal is gated internally to prevent the write from proceeding.

The use of $\overline{B U S Y}$ logic is notrequired ordesirable for all applications. In some cases itmay be useful tologically OR the $\overline{B U S Y}$ outputs together and use any $\overline{B U S Y}$ indication as an interrupt source to flag the event of anillegal orillogical operation. Ifthe write inhibitfunction of $\overline{B U S Y}$ logic is not desirable, the $\overline{B U S Y}$ logic can be disabled by placingthe partin slave mode with the M/̄ pin. Once in slave mode the BUSY pin operates solely as a write inhibitinputpin. Normal operation can be programmed bytying the $\overline{B U S Y}$ pins HIGH. If desired, unintended write operations can be prevented to a port by tying the BUSY pin for that port LOW.

The $\overline{B U S Y}$ outputs on the IDT 7025 RAM in master mode, are pushpull type outputs and do not require pull up resistors to operate. If these RAMs are being expanded in depth, then the $\overline{B U S Y}$ indication for the resulting array requires the use of an external AND gate.

Width Expansion with Busy Logic Master/Slave Arrays

When expanding an IDT7025 RAM array in width while using BUSY logic, one master partis used to decide which side of the RAM array will receive a $\overline{B U S Y}$ indication, and to output that indication. Any number of slaves to be addressed in the same address range as the master, use the $\overline{B U S Y}$ signal as a write inhibitsignal. Thus on the IDT7025 RAM the $\overline{B U S Y}$ pin is an outputifthe partis used as a master ($\mathrm{M} / \overline{\mathrm{S}}$ pin $=\mathrm{V} / \mathrm{I}$), and the $\overline{B U S Y}$ pinis aninputifthe partused as aslave $(M / \bar{S}$ pin $=V$ VIL $)$ as shown in Figure 3.

Iftwo or more masterparts were usedwhen expanding in width, a split decision could result with one master indicating BUSY on one side of the array and another master indicating $\overline{B U S Y}$ on one otherside of the array. This would inhibit the write operations from one portfor part of a word and inhibitthe write operations from the otherportforthe other partofthe word.

The BUSY arbitration, on a master, is based on the chip enable and address signals only. It ignores whether an access is a read or write. In a master/slave array, both address and chip enable must be valid long enoughforaBUSY flagtobeoutputfrom the masterbefore the actual write pulse can be initited witheitherthe $\mathrm{R} \overline{\mathrm{W}}$ signal orthe byte enables. Failure toobserve this timing can resultin a glitched internal write inhibitsignal and corrupted data in the slave.

Semaphores

The IDT7025is an extremelyfastDual-Port8Kx16CMOSStatic RAM with an additional 8address locations dedicatedtob binarysemaphoreflags. These flags allow either processor on the leftorrightside of the Dual-Port RAM to claim a privilege overthe otherprocessorforfunctions definedby the system designer's software. As a example, the semaphore can be used by one processorto inhibitthe otherfrom accessing a portion of the Dual-Port RAM or any other shared resource.

The Dual-Port RAM features a fast access time, and both ports are completely independent of each other. This means that the activity on the

Figure 3. Busy and chip enable routing for both width and depth expansion with IDT7025 RAMs.
left port in no way slows the access time of the right port. Both ports are identical infunctionto standardCMOSStatic RAM and canbe readfrom, orwrittento, atthe sametime withtheonly possible conflictarisingfrom the simultaneous writing of, or a simultaneous READ/WRITE of, a nonsemaphore location. Semaphores are protected againstsuchambiguous situations and may be used by the system program to avoid any conflicts inthenon-semaphore portion of the Dual-PortRAM. Thesedevices have an automatic power-down feature controlled by $\overline{C E}$, the Dual-PortRAM enable, and $\overline{\text { SEM }}$, the semaphore enable. The $\overline{C E}$ and $\overline{\text { SEM }}$ pins control on-chip power down circuitry that permits the respective port to go into standby mode when notselected. This is the condition which is shown in Truth Table I where $\overline{\mathrm{CE}}$ and $\overline{\text { SEM }}$ are both $=\mathrm{VIH}$.

Systems which can bestuse the IDT7025 containmultiple processors or controllers and are typically very high-speed systems which are software controlled or software intensive. These systems can benefitifrom a performance increase offered by the IDT7025's hardware semaphores, which provide a lockout mechanism without requiring complex programming.

Software handshaking between processors offers the maximum in systemflexibility by permittingshared resources to beallocated invarying configurations. The IDT7025 does notuse its semaphore flagsto control any resources through hardware, thus allowingthe system designertotal flexibility in system architecture.

An advantage of using semaphores rather than the more common methods of hardware arbitration is that wait states are never incurred in either processor. This can prove to be a major advantage in very highspeedsystems.

How the Semaphore Flags Work

The semaphore logic is a set of eightlatches which are independent ofthe Dual-PortRAM. These latches canbe usedto pass aflag, ortoken, from one porttotheotherto indicate thata shared resource is in use. The semaphores provide a hardware assist for a use assignment method called"Token Passing Allocation."Inthis method, the state of asemaphore latch is used as a tokenindicating that shared resource is in use. Ifthe left processorwantstousethis resource, it requeststhe token by setting the latch. This processorthen verifies its success in settingthe latchby reading it. If it was successful, it proceeds to assume control over the shared resource. Ifitwas not successful in setting the latch, itdetermines that the rightside processor has setthe latch first, has the token and is using the shared resource. The left processor can then either repeatedly request
that semaphore's status or remove its request for that semaphore to perform anothertask and occasionally attemptagainto gain control of the token viathe setand test sequence. Once the rightside has relinquished the token, the left side should succeed in gaining control.

The semaphoreflags are activeLOW. A token is requested by writing azero into a semaphore latch and is released when the same side writes a one to that latch.

The eight semaphore flags reside within the IDT7025 in a separate memory space fromtheDual-PortRAM. This address space is accessed by placing a LOW input on the $\overline{S E M}$ pin (which acts as a chip select for the semaphoreflags) andusing the othercontrol pins (Address, $\overline{\mathrm{OE}}$, and $\mathrm{R} / \overline{\mathrm{W}}$) as they would be used in accessing a standard Static RAM. Each of the flags has a unique address which can be accessed by either side through address pins A0-A2. When accessing the semaphores, none of the other address pins has any effect.

When writing to a semaphore, only datapin Do is used. Ifa LOW level is written into an unused semaphore location, that flag will be setto azero on that side and a one on the other side (see Truth Table III). That semaphore can now only be modified by the sideshowing the zero. When a one is written into the same location from the same side, the flag will be settoaoneforbothsides (unless a semaphore requestfrom theotherside is pending) and then can be writtento by both sides. The fact that the side whichis ableto writeazero intoasemaphore subsequently locks out writes fromtheotherside iswhatmakessemaphoreflags useful in interprocessor communications. (Athorough discussion ontheuse of thisfeaturefollows shortly.) A zero written into the same location from the other side will be stored inthe semaphore request latch for that side until the semaphore is freed by the first side.

When a semaphore flag is read, its value is spread into all data bits so that a flag that is a one reads as a one in all data bits and a flag containing a zero reads as allzeros. The read value is latched into one side's output register when that side's semaphore select ($\overline{\mathrm{SEM}}$) and output enable $(\overline{\mathrm{OE}})$ signals goactive. This serves to disallow the semaphorefrom changing state in the middle of a read cycle due to a write cycle from the other side. Because of this latch, a repeated read of a semaphore in atest loop must cause either signal ($\overline{\mathrm{SEM}}$ or $\overline{\mathrm{OE}}$) to go inactive or the output will never change.

A sequence WRITE/READ must be used by the semaphore in order to guarantee that no system level contention will occur. A processor requests access to shared resources by attempting to write a zero into a semaphore location. Ifthe semaphore is already in use, the semaphore requestlatch will containazero, yetthe semaphoreflag will appearasone, a fact which the processor will verify by the subsequent read (see Truth Table III). As an example, assume a processorwrites azero to the leftport at a free semaphore location. On a subsequent read, the processor will verify thatithas written successfully tothatlocation and will assume control overthe resource inquestion. Meanwhile, if a processor on the rightside attempts to write a zero to the same semaphore flag it will fail, as will be verified by the fact that a one will be read from that semaphore on the right side during subsequent read. Had a sequence of READ/WRITE been used instead, system contention problemscould have occurredduring the gap between the read and write cycles.

Itis importantto notethatafailed semaphore requestmustbefollowed by either repeated reads or by writing a one into the same location. The reason for this is easily understood by looking at the simple logic diagram of the semaphore flag in Figure 4. Two semaphore request latches feed
into a semaphore flag. Whichever latch is first to present a zero to the semaphoreflag will force its side ofthe semaphore flagLOW and the other side HIGH. This condition will continue until a one is written to the same semaphore requestlatch. Shouldtheotherside'ssemaphore requestlatch have been written to a zero in the meantime, the semaphore flag will flip overto the other side as soon as a one is written into the firstside's request latch. The secondside'sflag will now stay LOW untilits semaphore request latchiswrittentoaone. Fromthisitiseasyto understandthat, ifasemaphore is requested and the processor which requested it no longer needs the resource, the entire system can hang up until a one is written into that semaphore requestlatch.

The critical case of semaphore timing is when both sides request a single token by attempting to write a zero into it at the same time. The semaphore logic is specially designed to resolve this problem. If simultaneous requests are made, the logic guarantees that only one side receives the token. If one side is earlier than the other in making the request, the first side to make the request will receive the token. If both requests arrive atthe same time, the assignment will be arbitrarily made to one port or the other.

One caution that should be noted when using semaphores is that semaphores alone do not guarantee that access to a resource is secure. Aswith any powerful programmingtechnique, ifsemaphores aremisused or misinterpreted, a software error can easily happen.

Initialization of the semaphores is notautomatic and mustbe handled viathe initialization program at power-up. Since any semaphore request flag which contains azero mustbe resetto aone, all semaphores onboth sides should have a one written into them at initialization from both sides to assure that they will be free when needed.

Using Semaphores-Some Examples

Perhaps the simplestapplication of semaphores is theirapplicationas resourcemarkersfortheIDT7025's Dual-PortRAM. Say the 8 Kx16RAM was to be divided into two $4 \mathrm{~K} x 16$ blocks which were to be dedicated at any one time to servicing either the left or right port. Semaphore 0 could be used to indicate the side which would control the lower section of memory, and Semaphore 1 could be definedas the indicatorforthe upper section of memory.

To take a resource, in this example the lower 4K of Dual-Port RAM, the processor on the left port could write and then read a zero in to Semaphore0. If this task were successfully completed (a zero was read back rather than a one), the left processor would assume control of the lower 4 K . Meanwhile the right processor was attempting to gain control of the resource after the left processor, it would read back a one in response to the zero it had attempted to write into Semaphore 0. At this point, the software could choose to try and gain control of the second 4K section by writing, then reading a zero into Semaphore 1 . If it succeeded in gaining control, it would lock out the left side.

Once the left side was finished with its task, it would write a one to Semaphore 0 and may then try to gain access to Semaphore 1. If Semaphore 1 was still occupied by the right side, the left side could undo its semaphore requestand performothertasksuntil itwas ableto write, then readazero intoSemaphore 1. Ifthe rightprocessorperforms a similartask with Semaphore 0, this protocol would allow the two processors to swap 4 K blocks of Dual-Port RAM with each other.

The blocks do not have to be any particular size and can even be

IDT7025S/L

High-Speed 8K x 16 Dual-Port Static RAM
Military, Industrial and Commercial Temperature Ranges
variable, depending upon the complexity of the software using the semaphore flags. All eight semaphores could be used to divide the DualPort RAM or other shared resources into eight parts. Semaphores can evenbe assigned differentmeanings on differentsides ratherthan being given a common meaning as was shown in the example above.

Semaphores are a useful form of arbitration in systems like disk interfaces wheretheCPUmustbelockedout ofasection of memoryduring atransferand the I/Odevice cannottolerate any waitstates. With the use of semaphores, oncethetwo devices has determinedwhichmemoryarea was "off-limits"totheCPU, boththeCPU andthe I/Odevices couldaccess their assigned portions of memory continuously without any wait states.

Semaphores arealso useful in applications where no memory "WAIT" state is available on one orboth sides. Oncea semaphorehandshakehas
been performed, both processors can access their assigned RAM segments atfull speed.

Another application is in the area of complex data structures. In this case, block arbitration is very important. Forthis application one processor may be responsible for building and updating a data structure. The other processor then reads and interprets that data structure. If the interpreting processor reads an incompletedatastructure, a majorerrorcondition may exist. Therefore, some sort of arbitration must be used between the two differentprocessors. Thebuilding processorarbitrates fortheblock, locks it and then is able to go in andupdate the data structure. When the update is completed, the data structure block is released. This allows the interpreting processorto come back and readthe complete datastructure, thereby guaranteeing a consistent data structure.

2683 drw 20
Figure 4. IDT7025 Semaphore Logic

Ordering Information

2683 drw 21

NOTE:

1. Industrial range is available on selected PLCC packages in standard power.

For other speeds, packages and powers contact your sales office.

Datasheet Document History

1/13/99:	Initiateddatasheetdocument history
	Convertedto newformat
	Cosmetic andtypographical corrections
	Pages 2 and 3 Added additional notes to pin configurations
5/19/99:	Page 11 Fixed typographical error
6/3/99:	Changed drawingformat
	Page 1 Corrected DSC number
4/4/00:	Replaced IDT logo
	Page 7 Fixed typo in Data Retention chart
	Changed $\pm 500 \mathrm{mV}$ to 0 mV in notes

[^0]: 1. ' X ' in part number indicates power rating (S or L).
 2. Industrial temperature: for other speeds, packages and powers contact your sales office.
